Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Anaesth Crit Care Pain Med ; 42(5): 101255, 2023 May 29.
Article in English | MEDLINE | ID: covidwho-2328234

ABSTRACT

BACKGROUND: Corona Virus Disease 2019 (COVID-19) patients display risk factors for intensive care unit acquired weakness (ICUAW). The pandemic increased existing barriers to mobilisation. This study aimed to compare mobilisation practices in COVID-19 and non-COVID-19 patients. METHODS: This retrospective cohort study was conducted at Charité-Universitätsmedizin Berlin, Germany, including adult patients admitted to one of 16 ICUs between March 2018, and November 2021. The effect of COVID-19 on mobilisation level and frequency, early mobilisation (EM) and time to active sitting position (ASP) was analysed. Subgroup analysis on COVID-19 patients and the ICU type influencing mobilisation practices was performed. Mobilisation entries were converted into the ICU mobility scale (IMS) using supervised machine learning. The groups were matched using 1:1 propensity score matching. RESULTS: A total of 12,462 patients were included, receiving 59,415 mobilisations. After matching 611 COVID-19 and non-COVID-19 patients were analysed. They displayed no significant difference in mobilisation frequency (0.4 vs. 0.3, p = 0.7), maximum IMS (3 vs. 3; p = 0.17), EM (43.2% vs. 37.8%; p = 0.06) or time to ASP (HR 0.95; 95% CI: 0.82, 1.09; p = 0.44). Subgroup analysis showed that patients in surge ICUs, i.e., temporarily created ICUs for COVID-19 patients during the pandemic, more commonly received EM (53.9% vs. 39.8%; p = 0.03) and reached higher maximum IMS (4 vs. 3; p = 0.03) without difference in mobilisation frequency (0.5 vs. 0.3; p = 0.32) or time to ASP (HR 1.15; 95% CI: 0.85, 1.56; p = 0.36). CONCLUSION: COVID-19 did not hinder mobilisation. Those treated in surge ICUs were more likely to receive EM and reached higher mobilisation levels.

2.
J Med Internet Res ; 24(5): e31810, 2022 05 10.
Article in English | MEDLINE | ID: covidwho-1875271

ABSTRACT

BACKGROUND: Symptom checkers are digital tools assisting laypersons in self-assessing the urgency and potential causes of their medical complaints. They are widely used but face concerns from both patients and health care professionals, especially regarding their accuracy. A 2015 landmark study substantiated these concerns using case vignettes to demonstrate that symptom checkers commonly err in their triage assessment. OBJECTIVE: This study aims to revisit the landmark index study to investigate whether and how symptom checkers' capabilities have evolved since 2015 and how they currently compare with laypersons' stand-alone triage appraisal. METHODS: In early 2020, we searched for smartphone and web-based applications providing triage advice. We evaluated these apps on the same 45 case vignettes as the index study. Using descriptive statistics, we compared our findings with those of the index study and with publicly available data on laypersons' triage capability. RESULTS: We retrieved 22 symptom checkers providing triage advice. The median triage accuracy in 2020 (55.8%, IQR 15.1%) was close to that in 2015 (59.1%, IQR 15.5%). The apps in 2020 were less risk averse (odds 1.11:1, the ratio of overtriage errors to undertriage errors) than those in 2015 (odds 2.82:1), missing >40% of emergencies. Few apps outperformed laypersons in either deciding whether emergency care was required or whether self-care was sufficient. No apps outperformed the laypersons on both decisions. CONCLUSIONS: Triage performance of symptom checkers has, on average, not improved over the course of 5 years. It decreased in 2 use cases (advice on when emergency care is required and when no health care is needed for the moment). However, triage capability varies widely within the sample of symptom checkers. Whether it is beneficial to seek advice from symptom checkers depends on the app chosen and on the specific question to be answered. Future research should develop resources (eg, case vignette repositories) to audit the capabilities of symptom checkers continuously and independently and provide guidance on when and to whom they should be recommended.


Subject(s)
Emergency Medical Services , Mobile Applications , Data Collection , Follow-Up Studies , Humans , Self Care , Triage
3.
JMIR Public Health Surveill ; 8(4): e33733, 2022 04 15.
Article in English | MEDLINE | ID: covidwho-1793158

ABSTRACT

BACKGROUND: During the COVID-19 pandemic, medical laypersons with symptoms indicative of a COVID-19 infection commonly sought guidance on whether and where to find medical care. Numerous web-based decision support tools (DSTs) have been developed, both by public and commercial stakeholders, to assist their decision making. Though most of the DSTs' underlying algorithms are similar and simple decision trees, their mode of presentation differs: some DSTs present a static flowchart, while others are designed as a conversational agent, guiding the user through the decision tree's nodes step-by-step in an interactive manner. OBJECTIVE: This study aims to investigate whether interactive DSTs provide greater decision support than noninteractive (ie, static) flowcharts. METHODS: We developed mock interfaces for 2 DSTs (1 static, 1 interactive), mimicking patient-facing, freely available DSTs for COVID-19-related self-assessment. Their underlying algorithm was identical and based on the Centers for Disease Control and Prevention's guidelines. We recruited adult US residents online in November 2020. Participants appraised the appropriate social and care-seeking behavior for 7 fictitious descriptions of patients (case vignettes). Participants in the experimental groups received either the static or the interactive mock DST as support, while the control group appraised the case vignettes unsupported. We determined participants' accuracy, decision certainty (after deciding), and mental effort to measure the quality of decision support. Participants' ratings of the DSTs' usefulness, ease of use, trust, and future intention to use the tools served as measures to analyze differences in participants' perception of the tools. We used ANOVAs and t tests to assess statistical significance. RESULTS: Our survey yielded 196 responses. The mean number of correct assessments was higher in the intervention groups (interactive DST group: mean 11.71, SD 2.37; static DST group: mean 11.45, SD 2.48) than in the control group (mean 10.17, SD 2.00). Decisional certainty was significantly higher in the experimental groups (interactive DST group: mean 80.7%, SD 14.1%; static DST group: mean 80.5%, SD 15.8%) compared to the control group (mean 65.8%, SD 20.8%). The differences in these measures proved statistically significant in t tests comparing each intervention group with the control group (P<.001 for all 4 t tests). ANOVA detected no significant differences regarding mental effort between the 3 study groups. Differences between the 2 intervention groups were of small effect sizes and nonsignificant for all 3 measures of the quality of decision support and most measures of participants' perception of the DSTs. CONCLUSIONS: When the decision space is limited, as is the case in common COVID-19 self-assessment DSTs, static flowcharts might prove as beneficial in enhancing decision quality as interactive tools. Given that static flowcharts reveal the underlying decision algorithm more transparently and require less effort to develop, they might prove more efficient in providing guidance to the public. Further research should validate our findings on different use cases, elaborate on the trade-off between transparency and convenience in DSTs, and investigate whether subgroups of users benefit more with 1 type of user interface than the other. TRIAL REGISTRATION: Deutsches Register Klinischer Studien DRKS00028136; https://tinyurl.com/4bcfausx (retrospectively registered).


Subject(s)
COVID-19 , Adult , Humans , Intention , Pandemics , Surveys and Questionnaires
4.
J Clin Med ; 11(3)2022 Feb 05.
Article in English | MEDLINE | ID: covidwho-1686839

ABSTRACT

(1) Background: Female sex is considered a risk factor for Intensive Care Unit-Acquired Weakness (ICUAW). The aim is to investigate sex-specific aspects of skeletal muscle metabolism in the context of ICUAW. (2) Methods: This is a sex-specific sub-analysis from two prospectively conducted trials examining skeletal muscle metabolism and advanced muscle activating measures in critical illness. Muscle strength was assessed by Medical Research Council Score. The insulin sensitivity index was analyzed by hyperinsulinemic-euglycemic (HE) clamp. Muscular metabolites were studied by microdialysis. M. vastus lateralis biopsies were taken. The molecular analysis included protein degradation pathways. Morphology was assessed by myocyte cross-sectional area (MCSA). Multivariable linear regression models for the effect of sex on outcome parameters were performed. (3) Results: n = 83 (♂n = 57, 68.7%; ♀n = 26, 31.3%) ICU patients were included. ICUAW was present in 81.1%♂ and in 82.4%♀ at first awakening (p = 0.911) and in 59.5%♂ and in 70.6%♀ at ICU discharge (p = 0.432). Insulin sensitivity index was reduced more in women than in men (p = 0.026). Sex was significantly associated with insulin sensitivity index and MCSA of Type IIa fibers in the adjusted regression models. (4) Conclusion: This hypothesis-generating analysis suggests that more pronounced impairments in insulin sensitivity and lower MCSA of Type IIa fibers in critically ill women may be relevant for sex differences in ICUAW.

5.
J Med Internet Res ; 23(2): e25283, 2021 02 08.
Article in English | MEDLINE | ID: covidwho-1573903

ABSTRACT

BACKGROUND: The COVID-19 outbreak has affected the lives of millions of people by causing a dramatic impact on many health care systems and the global economy. This devastating pandemic has brought together communities across the globe to work on this issue in an unprecedented manner. OBJECTIVE: This case study describes the steps and methods employed in the conduction of a remote online health hackathon centered on challenges posed by the COVID-19 pandemic. It aims to deliver a clear implementation road map for other organizations to follow. METHODS: This 4-day hackathon was conducted in April 2020, based on six COVID-19-related challenges defined by frontline clinicians and researchers from various disciplines. An online survey was structured to assess: (1) individual experience satisfaction, (2) level of interprofessional skills exchange, (3) maturity of the projects realized, and (4) overall quality of the event. At the end of the event, participants were invited to take part in an online survey with 17 (+5 optional) items, including multiple-choice and open-ended questions that assessed their experience regarding the remote nature of the event and their individual project, interprofessional skills exchange, and their confidence in working on a digital health project before and after the hackathon. Mentors, who guided the participants through the event, also provided feedback to the organizers through an online survey. RESULTS: A total of 48 participants and 52 mentors based in 8 different countries participated and developed 14 projects. A total of 75 mentorship video sessions were held. Participants reported increased confidence in starting a digital health venture or a research project after successfully participating in the hackathon, and stated that they were likely to continue working on their projects. Of the participants who provided feedback, 60% (n=18) would not have started their project without this particular hackathon and indicated that the hackathon encouraged and enabled them to progress faster, for example, by building interdisciplinary teams, gaining new insights and feedback provided by their mentors, and creating a functional prototype. CONCLUSIONS: This study provides insights into how online hackathons can contribute to solving the challenges and effects of a pandemic in several regions of the world. The online format fosters team diversity, increases cross-regional collaboration, and can be executed much faster and at lower costs compared to in-person events. Results on preparation, organization, and evaluation of this online hackathon are useful for other institutions and initiatives that are willing to introduce similar event formats in the fight against COVID-19.


Subject(s)
COVID-19/therapy , Delivery of Health Care/organization & administration , Internet , Adult , COVID-19/epidemiology , Humans , SARS-CoV-2/isolation & purification
6.
Sci Rep ; 11(1): 13205, 2021 06 24.
Article in English | MEDLINE | ID: covidwho-1281734

ABSTRACT

In a pandemic with a novel disease, disease-specific prognosis models are available only with a delay. To bridge the critical early phase, models built for similar diseases might be applied. To test the accuracy of such a knowledge transfer, we investigated how precise lethal courses in critically ill COVID-19 patients can be predicted by a model trained on critically ill non-COVID-19 viral pneumonia patients. We trained gradient boosted decision tree models on 718 (245 deceased) non-COVID-19 viral pneumonia patients to predict individual ICU mortality and applied it to 1054 (369 deceased) COVID-19 patients. Our model showed a significantly better predictive performance (AUROC 0.86 [95% CI 0.86-0.87]) than the clinical scores APACHE2 (0.63 [95% CI 0.61-0.65]), SAPS2 (0.72 [95% CI 0.71-0.74]) and SOFA (0.76 [95% CI 0.75-0.77]), the COVID-19-specific mortality prediction models of Zhou (0.76 [95% CI 0.73-0.78]) and Wang (laboratory: 0.62 [95% CI 0.59-0.65]; clinical: 0.56 [95% CI 0.55-0.58]) and the 4C COVID-19 Mortality score (0.71 [95% CI 0.70-0.72]). We conclude that lethal courses in critically ill COVID-19 patients can be predicted by a machine learning model trained on non-COVID-19 patients. Our results suggest that in a pandemic with a novel disease, prognosis models built for similar diseases can be applied, even when the diseases differ in time courses and in rates of critical and lethal courses.


Subject(s)
COVID-19/diagnosis , Machine Learning , Models, Theoretical , Aged , COVID-19/therapy , Critical Illness , Female , Humans , Male , Middle Aged , Prognosis , Retrospective Studies , Risk Factors
7.
J Med Internet Res ; 23(5): e26494, 2021 05 28.
Article in English | MEDLINE | ID: covidwho-1247759

ABSTRACT

BACKGROUND: As one of the most essential technical components of the intensive care unit (ICU), continuous monitoring of patients' vital parameters has significantly improved patient safety by alerting staff through an alarm when a parameter deviates from the normal range. However, the vast number of alarms regularly overwhelms staff and may induce alarm fatigue, a condition recently exacerbated by COVID-19 and potentially endangering patients. OBJECTIVE: This study focused on providing a complete and repeatable analysis of the alarm data of an ICU's patient monitoring system. We aimed to develop do-it-yourself (DIY) instructions for technically versed ICU staff to analyze their monitoring data themselves, which is an essential element for developing efficient and effective alarm optimization strategies. METHODS: This observational study was conducted using alarm log data extracted from the patient monitoring system of a 21-bed surgical ICU in 2019. DIY instructions were iteratively developed in informal interdisciplinary team meetings. The data analysis was grounded in a framework consisting of 5 dimensions, each with specific metrics: alarm load (eg, alarms per bed per day, alarm flood conditions, alarm per device and per criticality), avoidable alarms, (eg, the number of technical alarms), responsiveness and alarm handling (eg alarm duration), sensing (eg, usage of the alarm pause function), and exposure (eg, alarms per room type). Results were visualized using the R package ggplot2 to provide detailed insights into the ICU's alarm situation. RESULTS: We developed 6 DIY instructions that should be followed iteratively step by step. Alarm load metrics should be (re)defined before alarm log data are collected and analyzed. Intuitive visualizations of the alarm metrics should be created next and presented to staff in order to help identify patterns in the alarm data for designing and implementing effective alarm management interventions. We provide the script we used for the data preparation and an R-Markdown file to create comprehensive alarm reports. The alarm load in the respective ICU was quantified by 152.5 (SD 42.2) alarms per bed per day on average and alarm flood conditions with, on average, 69.55 (SD 31.12) per day that both occurred mostly in the morning shifts. Most alarms were issued by the ventilator, invasive blood pressure device, and electrocardiogram (ie, high and low blood pressure, high respiratory rate, low heart rate). The exposure to alarms per bed per day was higher in single rooms (26%, mean 172.9/137.2 alarms per day per bed). CONCLUSIONS: Analyzing ICU alarm log data provides valuable insights into the current alarm situation. Our results call for alarm management interventions that effectively reduce the number of alarms in order to ensure patient safety and ICU staff's work satisfaction. We hope our DIY instructions encourage others to follow suit in analyzing and publishing their ICU alarm data.


Subject(s)
COVID-19/diagnosis , COVID-19/physiopathology , Clinical Alarms/statistics & numerical data , Intensive Care Units , Monitoring, Physiologic/methods , Personnel, Hospital/education , Humans , Monitoring, Physiologic/instrumentation , Patient Safety , Programming Languages
8.
Infection ; 49(4): 703-714, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1198523

ABSTRACT

PURPOSE: Adequate patient allocation is pivotal for optimal resource management in strained healthcare systems, and requires detailed knowledge of clinical and virological disease trajectories. The purpose of this work was to identify risk factors associated with need for invasive mechanical ventilation (IMV), to analyse viral kinetics in patients with and without IMV and to provide a comprehensive description of clinical course. METHODS: A cohort of 168 hospitalised adult COVID-19 patients enrolled in a prospective observational study at a large European tertiary care centre was analysed. RESULTS: Forty-four per cent (71/161) of patients required invasive mechanical ventilation (IMV). Shorter duration of symptoms before admission (aOR 1.22 per day less, 95% CI 1.10-1.37, p < 0.01) and history of hypertension (aOR 5.55, 95% CI 2.00-16.82, p < 0.01) were associated with need for IMV. Patients on IMV had higher maximal concentrations, slower decline rates, and longer shedding of SARS-CoV-2 than non-IMV patients (33 days, IQR 26-46.75, vs 18 days, IQR 16-46.75, respectively, p < 0.01). Median duration of hospitalisation was 9 days (IQR 6-15.5) for non-IMV and 49.5 days (IQR 36.8-82.5) for IMV patients. CONCLUSIONS: Our results indicate a short duration of symptoms before admission as a risk factor for severe disease that merits further investigation and different viral load kinetics in severely affected patients. Median duration of hospitalisation of IMV patients was longer than described for acute respiratory distress syndrome unrelated to COVID-19.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , SARS-CoV-2/physiology , COVID-19/therapy , Cohort Studies , Germany/epidemiology , Hospitalization , Humans , Hypertension/complications , Kinetics , Prospective Studies , Respiration, Artificial , Risk Factors , Tertiary Care Centers , Time Factors , Viral Load , Virus Shedding
9.
Kidney Int Rep ; 6(4): 905-915, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1169160

ABSTRACT

INTRODUCTION: Acute kidney injury (AKI) is an important complication in COVID-19, but its precise etiology has not fully been elucidated. Insights into AKI mechanisms may be provided by analyzing the temporal associations of clinical parameters reflecting disease processes and AKI development. METHODS: We performed an observational cohort study of 223 consecutive COVID-19 patients treated at 3 sites of a tertiary care referral center to describe the evolvement of severe AKI (Kidney Disease: Improving Global Outcomes stage 3) and identify conditions promoting its development. Descriptive statistics and explanatory multivariable Cox regression modeling with clinical parameters as time-varying covariates were used to identify risk factors of severe AKI. RESULTS: Severe AKI developed in 70 of 223 patients (31%) with COVID-19, of which 95.7% required kidney replacement therapy. Patients with severe AKI were older, predominantly male, had more comorbidities, and displayed excess mortality. Severe AKI occurred exclusively in intensive care unit patients, and 97.3% of the patients developing severe AKI had respiratory failure. Mechanical ventilation, vasopressor therapy, and inflammatory markers (serum procalcitonin levels and leucocyte count) were independent time-varying risk factors of severe AKI. Increasing inflammatory markers displayed a close temporal association with the development of severe AKI. Sensitivity analysis on risk factors of AKI stage 2 and 3 combined confirmed these findings. CONCLUSION: Severe AKI in COVID-19 was tightly coupled with critical illness and systemic inflammation and was not observed in milder disease courses. These findings suggest that traditional systemic AKI mechanisms rather than kidney-specific processes contribute to severe AKI in COVID-19.

10.
Nat Biotechnol ; 38(8): 970-979, 2020 08.
Article in English | MEDLINE | ID: covidwho-1023942

ABSTRACT

To investigate the immune response and mechanisms associated with severe coronavirus disease 2019 (COVID-19), we performed single-cell RNA sequencing on nasopharyngeal and bronchial samples from 19 clinically well-characterized patients with moderate or critical disease and from five healthy controls. We identified airway epithelial cell types and states vulnerable to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In patients with COVID-19, epithelial cells showed an average three-fold increase in expression of the SARS-CoV-2 entry receptor ACE2, which correlated with interferon signals by immune cells. Compared to moderate cases, critical cases exhibited stronger interactions between epithelial and immune cells, as indicated by ligand-receptor expression profiles, and activated immune cells, including inflammatory macrophages expressing CCL2, CCL3, CCL20, CXCL1, CXCL3, CXCL10, IL8, IL1B and TNF. The transcriptional differences in critical cases compared to moderate cases likely contribute to clinical observations of heightened inflammatory tissue damage, lung injury and respiratory failure. Our data suggest that pharmacologic inhibition of the CCR1 and/or CCR5 pathways might suppress immune hyperactivation in critical COVID-19.


Subject(s)
Coronavirus Infections/pathology , Coronavirus Infections/physiopathology , Pneumonia, Viral/pathology , Pneumonia, Viral/physiopathology , Respiratory System/pathology , Single-Cell Analysis , Transcriptome , Adult , Aged , Angiotensin-Converting Enzyme 2 , Bronchoalveolar Lavage Fluid/virology , COVID-19 , Cell Communication , Cell Differentiation , Coronavirus Infections/virology , Epithelial Cells/pathology , Epithelial Cells/virology , Female , Humans , Immune System/pathology , Inflammation/immunology , Inflammation/pathology , Longitudinal Studies , Male , Middle Aged , Nasopharynx/virology , Pandemics , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/virology , Respiratory System/immunology , Respiratory System/virology , Severity of Illness Index
11.
J Med Internet Res ; 22(10): e22161, 2020 10 29.
Article in English | MEDLINE | ID: covidwho-895252

ABSTRACT

BACKGROUND: Owing to an increase in digital technologies in health care, recently leveraged by the COVID-19 pandemic, physicians are required to use these technologies appropriately and to be familiar with their implications on patient care, the health system, and society. Therefore, medical students should be confronted with digital health during their medical education. However, corresponding teaching formats and concepts are still largely lacking in the medical curricula. OBJECTIVE: This study aims to introduce digital health as a curricular module at a German medical school and to identify undergraduate medical competencies in digital health and their suitable teaching methods. METHODS: We developed a 3-week curricular module on digital health for third-year medical students at a large German medical school, taking place for the first time in January 2020. Semistructured interviews with 5 digital health experts were recorded, transcribed, and analyzed using an abductive approach. We obtained feedback from the participating students and lecturers of the module through a 17-item survey questionnaire. RESULTS: The module received overall positive feedback from both students and lecturers who expressed the need for further digital health education and stated that the field is very important for clinical care and is underrepresented in the current medical curriculum. We extracted a detailed overview of digital health competencies, skills, and knowledge to teach the students from the expert interviews. They also contained suggestions for teaching methods and statements supporting the urgency of the implementation of digital health education in the mandatory curriculum. CONCLUSIONS: An elective class seems to be a suitable format for the timely introduction of digital health education. However, a longitudinal implementation in the mandatory curriculum should be the goal. Beyond training future physicians in digital skills and teaching them digital health's ethical, legal, and social implications, the experience-based development of a critical digital health mindset with openness to innovation and the ability to assess ever-changing health technologies through a broad transdisciplinary approach to translate research into clinical routine seem more important. Therefore, the teaching of digital health should be as practice-based as possible and involve the educational cooperation of different institutions and academic disciplines.


Subject(s)
Curriculum , Education, Medical, Undergraduate/methods , Schools, Medical , Students, Medical , Telemedicine , COVID-19 , Coronavirus Infections , Feedback , Germany , Humans , Pandemics , Pneumonia, Viral , Surveys and Questionnaires
12.
J Med Internet Res ; 22(6): e19091, 2020 06 19.
Article in English | MEDLINE | ID: covidwho-620537

ABSTRACT

BACKGROUND: Due to demographic change and, more recently, coronavirus disease (COVID-19), the importance of modern intensive care units (ICU) is becoming apparent. One of the key components of an ICU is the continuous monitoring of patients' vital parameters. However, existing advances in informatics, signal processing, or engineering that could alleviate the burden on ICUs have not yet been applied. This could be due to the lack of user involvement in research and development. OBJECTIVE: This study focused on the satisfaction of ICU staff with current patient monitoring and their suggestions for future improvements. We aimed to identify aspects of monitoring that interrupt patient care, display devices for remote monitoring, use cases for artificial intelligence (AI), and whether ICU staff members are willing to improve their digital literacy or contribute to the improvement of patient monitoring. We further aimed to identify differences in the responses of different professional groups. METHODS: This survey study was performed with ICU staff from 4 ICUs of a German university hospital between November 2019 and January 2020. We developed a web-based 36-item survey questionnaire, by analyzing a preceding qualitative interview study with ICU staff, about the clinical requirements of future patient monitoring. Statistical analyses of questionnaire results included median values with their bootstrapped 95% confidence intervals, and chi-square tests to compare the distributions of item responses of the professional groups. RESULTS: In total, 86 of the 270 ICU physicians and nurses completed the survey questionnaire. The majority stated they felt confident using the patient monitoring equipment, but that high rates of false-positive alarms and the many sensor cables interrupted patient care. Regarding future improvements, respondents asked for wireless sensors, a reduction in the number of false-positive alarms, and hospital standard operating procedures for alarm management. Responses to the display devices proposed for remote patient monitoring were divided. Most respondents indicated it would be useful for earlier alerting or when they were responsible for multiple wards. AI for ICUs would be useful for early detection of complications and an increased risk of mortality; in addition, the AI could propose guidelines for therapy and diagnostics. Transparency, interoperability, usability, and staff training were essential to promote the use of AI. The majority wanted to learn more about new technologies for the ICU and required more time for learning. Physicians had fewer reservations than nurses about AI-based intelligent alarm management and using mobile phones for remote monitoring. CONCLUSIONS: This survey study of ICU staff revealed key improvements for patient monitoring in intensive care medicine. Hospital providers and medical device manufacturers should focus on reducing false alarms, implementing hospital alarm standard operating procedures, introducing wireless sensors, preparing for the use of AI, and enhancing the digital literacy of ICU staff. Our results may contribute to the user-centered transfer of digital technologies into practice to alleviate challenges in intensive care medicine. TRIAL REGISTRATION: ClinicalTrials.gov NCT03514173; https://clinicaltrials.gov/ct2/show/NCT03514173.


Subject(s)
Betacoronavirus , Coronavirus Infections , Critical Care/methods , Health Care Surveys , Intensive Care Units , Monitoring, Physiologic/methods , Pandemics , Pneumonia, Viral , Adult , Artificial Intelligence , COVID-19 , Critical Care/standards , Female , Germany , Hospitals, University , Humans , Male , Monitoring, Physiologic/standards , Nurses , Physicians , Qualitative Research , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL